The inside of a black hole is hidden behind broken equations and a gravitational field so strong that even light cannot escape. Although general relativity predicts that black holes exist, the theory breaks down at the event horizon. It is widely believed that understanding the inside of a black hole will require a new theory of physics: a theory of quantum gravity.

General relativity uses spacetime geometry to explain gravity. Knot Physics extends this geometric description by assuming that spacetime is a branched manifold. In Knot Physics, both quantum mechanics and gravity result from the behavior of the branches of spacetime. This theory of quantum gravity makes predictions about the interior of black holes, extending our knowledge of physics beyond the event horizon.

Continue reading Physics Beyond the Event Horizon